CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection

نویسندگان

  • Meiirbek Islamov
  • Marzhan Sypabekova
  • Damira Kanayeva
  • Luis Rojas-Solórzano
چکیده

Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber

This paper reports a CFD modeling study to investigate the hydrogen-air mixture combustion in a micro scale chamber. Nine species with nineteen reversible reactions were considered in the premixed combustion model. The effect of operational and geometrical conditions including; combustor size, wall conductivity, reactant flow rates and hydrogen feed splitting on combustion stabilit...

متن کامل

Micro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites

In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...

متن کامل

Numerical Modeling of a Metamaterial Biosensor for Cancer Tissues Detection

In this paper, the numerical design and simulate a biosensor to detect tumors and cancerous tissues by using metamaterial structures in the microwave regime are presented. The presented structure consists of a microstrip transmission line and a split ring resonator (SRR) that form a bandpass filter and has a unique resonance frequency. Given that cancerous tissues have larger volumes of water t...

متن کامل

Sequential Push-Pull Pumping Mechanism for Washing and Evacuation of an Immunoassay Reaction Chamber on a Microfluidic CD Platform

A centrifugal compact disc (CD) microfluidic platform with reservoirs, micro-channels, and valves can be employed for implementing a complete immunoassay. Detection or biosensor chambers are either coated for immuno-interaction or a biosensor chip is inserted in them. On microfluidic CDs featuring such multi-step chemical/biological processes, the biosensor chamber must be repeatedly filled wit...

متن کامل

Ultra-Sensitive Optical Biosensor Based on Whispering Gallery Modes: The Effect of Buffer Solutions Refractive Index on Their Sensitivity and Performance

Background: Whispering gallery modes (WGM) biosensors are ultrasensitive systems that can measure amount of adsorbed layer onto the micro-cavity surface. They have many applications including protein, peptide growth, DNA and bacteria detection, molecular properties measurements and specific interaction and drug table recognitions due to their high sensitivity, compact size and label free sensin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017